Patricia Riley [Lincoln Park HS,
Chemistry]
Types of Chemical Reactions
Pat set the objectives as (1) performing reactions and recording
observations, and
(2)
identifying reaction types from observations. She provided us
with the following
materials, and we worked in groups of 4:
Candle | Beaker | Magnesium Metal Strip: Mg |
Test tubes | Steel wool | Hydrogen Chloride Solution: HCl |
Sodium Chloride: NaCl | Matches | Hydrogen Peroxide Solution: H2O2 |
Copper Metal strip: Cu | Wood splints | Silver Nitrate Solution: AgN03 |
Lump of sulfur: S8 | Manganese (II) Dioxide: MnO2 |
Therese Donatello [Edwards
School]
Atomic Structure: Don't use just the Bohr Model anymore!
Terry used
the LAB-AIDS INC [http://www.lab-aids.com]
kit Sublevel Orbitals of the Atom (Quantum Models)
[https://lab-aids.com/kits-and-modules/details/sublevel-orbitals-of-the-atom-models-quantum-models]
to represent electronic orbitals that correspond to specific energy
levels and
sub-levels in atoms. The following summary is given at the
website listed
above:
"3-dimensional model which clearly shows the position and number of electrons along the x, y and z axes as well as the orbitals of the sublevels of the major energy levels. As the students assemble the model, they will review the four quantum numbers and Pauli’s Exclusion Principle. They will identify the number and position of electrons in various atoms. Using specially designed components which simplify a rather abstract concept, students are able to observe the three dimensional effect of the model. A quantum numbers information chart is provided on each worksheet making it easier for the student to assemble the model starting with the s1 orbitals. Color-coded components help distinguish the differences between S and p orbitals. Students construct models of several common elements in the lab exercise. The models reinforce how the properties of a family of elements on the Periodic Table are a reflection of similarities in the electron configuration of their atoms."Terry used this kit to make Tinker Toy® models of various atoms, showing the geometry of the electrons in the various energy levels. For example, the 1S orbital, is represented as a small, clear-blue plastic disk, and the single electron in hydrogen is represented as a black dot on that orbital disk. Helium, which contains 2 electrons in the 1S orbital, contains two black dots on a single blue orbital disk. Beryllium, containing 4 electrons, has a 1S orbital, as well as a 2S orbital, represented by a larger red disk. Each disk contains two black dots, representing two electrons in this orbital. Carbon, containing 6 electrons, has the 1S and 2S orbitals (blue and red disks, as before), as well as three "figure eights" made out of clear green, yellow, and pink plastic, representing the 2P orbitals; 2Px 2Py 2Pz. Two dots, representing the two electrons in the 2P state of carbon, are placed somewhere on the 2P orbitals.
The structure of the periodic table was greatly clarified with these models. In a given row of the periodic table, orbitals are being filled until they contain the maximum number of electrons allowed by the Pauli Exclusion Principle.
Very thought-provoking! Thanks, Terry.
Notes taken by Benjamin Stark