Using the notation popularized by Paul Hewitt [Conceptual Physics],
a smaller force F
acting over a longer time interval Dt
produces the same impulse
as a larger force F acting over a shorter time Dt
:
To make this point in a more dramatic fashion, Bill said he would fall backwards off the table. But first he set up team of six of us (potential pall bearers?!) to catch him. The team was arranged into three pairs. Within a pair, each person faced the other. Each held his upper arm vertically at his sides, and forearms held forward and parallel to each other and the floor. Then - with hands facing down - each person grasped his own right wrist with his own left hand, and with his right hand he grasped the left wrist of his partner. The "people platform" thus formed by each pair can support much weight. (If you were a Scout, you probably know this!)
The three pairs then lined up in a row, perpendicular to the table, and Bill stood at the edge of the table, with his back to the row of these three "people platforms." Then he slowly tipped over backwards, keeping his body rigid, and falling right onto the "people platforms" - who were able to catch him before he might experience certain calamity! Everybody breathed sigh of relief, and Bill gave us the following pointers when attempting this feat:
Larry Alofs [Kenwood Academy, Physics]
Diffraction versus Refraction
Larry produced a diffraction grating with 530 grating lines
per
millimeter, corresponding to a spacing d = 1.89 microns
between
lines. He passed light from a standard red
diode laser through this slit
and onto the white board, showing 3 spots, which meet the grating
condition d
sin q = n l,
the central spot corresponding to n = 0 and the two side spots
for n = ±1.
Larry pointed out that
sin q = x / L = l,
where x is the separation distance between spots, L is
the
distance from the grating to the board, and l is
the wavelength of light.
As an extension of the exercise, Larry asked what would change if we replaced the red laser light source with a green one. We decided that the wavelength l of light hitting the grating would be decreased, so that the distances between spots would also decrease. Larry took out a green light solid state laser [http://www.harborfreight.com/cpi/ctaf/Displayitem.taf?itemnumber=43137] which has a 3 Volt power supply. He had ordered the light from a Harbor Freight Catalog [http://www.harborfreight.com/] for about $200, but it did not appear in their most recent catalog. [By contrast, the green light laser manufactured by MetrologicCorporation can be obtained for around $700.] He put the green laser on the same stand as the red one, so that both could pass through the slit. We observed that the green side dots were about 20% closer to the center dot than for red. Very impressive, Larry!
To distinguish the color separation produced by the grating [interference] from that obtained with a glass prism [refraction], he suspended a fairly large prism in front of the two laser light sources. We could see that, indeed, green light was refracted more than red light, because the index of refraction for glass and many other materials is greater for green than red, but that the images shifted by about 1% of the amount observed previously with the diffraction grating. Beautiful!
Now we see the light, Larry!
Karlene
Joseph [Lane Tech HS, Physics] A Story of Science
Excitement
Karlene showed her 4th grade daughter a variation of the SMILE
demonstration of resistors in series and resistors in parallel, which
her
daughter described as way cool! A few days later her daughter
went into
the hospital for tests involving a pulse oxygen monitor, a heart
monitor, and a
a neural monitor. The daughter was quite surprised when she
learned that
humans ALSO conduct electricity. Karlene got her
a CHIRPING
CHICK toy, on which a chirping noise is produced whenever you touch
the
terminals and make a closed circuit. At school the daughter's
class got 26
people to form a "series circuit", through which electricity passed so
that the bird would chirp. The resistance between two points of dry
human skin
is of order 100,000 Ohms, so that a current of 0.1
milli-Ampères
would flow with a potential difference of 10 Volts. Children
are never
too young to begin to appreciate science. Really way cool,
Karlene!
Ann Brandon [Joliet West HS, Physics]
Energy of A Pendulum
Ann led us through the following experiment: Is mechanical
energy conserved
when a pendulum swings?
Don Kanner [Lane Tech HS, Physics] Camera
Obscura
Don began by describing a recent television program that
explained the
role of the Camera Obscura
[http://brightbytes.com/cosite/what.html]
in the late renaissance, in which the goal was
to produce faithful images of portraits, rooms, and even landscape
scenes.
The program highlighted the conclusions presented by David Hockney, Secret
Knowledge: Rediscovering the Lost Techniques of the Old Masters
[Viking
Press 2001: ISBN 9-6700-30260]. Hockney has suggested that
paintings such
as da Vinci, Caravaggio, Velázquez, and van Eyck were
actually created
using optics and lenses; see
http://www.acmi.net.au/AIC/CAMERA_OBSCURA.html.. The Flemish
artist Jan Van Eyck [born in
1434] may have used a lens [http://www.ibiblio.org/wm/paint/auth/eyck/
and http://www.artchive.com/artchive/V/van_eyck.html]
to produce the image of the little dog at the
bottom of the painting Arnolfini Wedding Portrait.
Indeed, in a mirror
behind the couple, we can see the wedding party, as well as a person
covered
with "black-out cloth" and looking through a hole. Hockney does
not consider his work an exposé of the great masters;
instead he feels
that artists have always made use of the technology available to them
in
creating their images, and the Camera Obscura [or dark room!]
may have
been more widely used than previously thought. The achievements
of these
artists stand as one of the greatest monuments to artistic genius of
all
time. In the modern age, the dominant mode of art consists of
digital
images, which are more flexible and adaptable than the traditional
easel,
canvas, brushes, and paint.
One could produce images suitable for tracing onto paper using (1) a small hole to form a pinhole camera, (2) a lens to focus light, or (3) a spherical mirror to focus light. Since the first method produces very dim images, even inside a darkened room, and since the technology to produce high-quality large images has been available only for about two centuries, Fred thought that curved mirrors would work best. He brought a large spherical mirror about 50 cm in diameter, with a radius of curvature of about R ~ 2 meters, corresponding to a focal length of f = R/2 ~ 1 meter. On a screen we could see the inverted, blurred image of a person standing in front of the white board, by reflection off the spherical mirror.
Porter mentioned the film Artemisia [1997; French language], which deals with the life of Artemisia Gentileschi (1593-1653), [http://www.u.arizona.edu/ic/mcbride/ws200/gentil.htm] one of the first well-known female painters. In that film the artists view landscape scenes through a small hole, placed about a meter behind a 6 ´ 6 lattice network that lies in a vertical plane, to set the correct perspective while laying out an image. Don mentioned that Albrecht Dürer of Nürnberg also made sketches using a gadget with strings and a grid. At last we see the light! Thought-provoking and interesting, Don!
Richard Goberville [Joliet Central, Physics]
Physics Toys and Cartoons
Richard passed around a Shock Pen, a Piezoelectric
device
that produces a high Voltage when one presses its cap. It
is available
from Johnson-Smith Catalog, http://www.johnsonsmith.com,where
it is listed as item #26074, available for around $13.
Here is the blurb:
If "office thieves" are bugging you, here's the cure. The Shock Pen's hair-raising jolt is guaranteed to stop the "borrowing." Please do not use with young children, or anyone with a medical condition. Uses one "AAA" battery, not included.Richard also passed around a "floating globe", which he obtained at a Hobby Lobby Store for about $50. A similar device is described and shown at the websites http://www.WorldGlobes.com and http://www.tradekey.com/product_view/id/69699.htm. There is a permanent magnet on the North Pole of the globe and a piece of metal at the South Pole. What holds the globe up? Richard also passed around some interesting cartoons from Garfield, Over the Hedge, BC, and The Far Side, showing important concepts in mechanics. Don't forget about The Laws of Cartoon Physics: http://funnies.paco.to/cartoon.html. You've got us thinking, Richard!
Michelle Gattuso, Lee Slick, Fred Schaal, and Bill Shanks were unable to do their presentations due to lack of time, but will be scheduled for 10 December, our next meeting.
Notes taken by Porter Johnson