Analytical Proof of Newton's Force Laws

Contents

Contents	
	Page
Introduction	1
Summary of Analytical Method to Prove Newton's Force Laws	1
Planet Position in Polar Coordinates r and θ	2
Planet Velocity in x and y directions	4
Planet accelerations in x and y directions	6
Equate Gravitational Force to Planet Inertial Force	7
Planet Radial and Transverse Accelerations ($lpha_{ m R}$ and $lpha_{ m T}$)	10
Replace Time Dependent Term, $d\theta / dt$, in α_{R}	13
Replace Time Dependent Term, d^2r/dt^2 , in $\alpha_{\rm R}$	15
Obtain <i>r</i> as a function of θ and confirm Kepler's First Law	17
Polar Equation of Conics	20
Proof of Kepler's Second Law	22
Proof of Kepler's Third Law	23
Newton's Analytical Estimate of G	25
Two Methods of Calculating Moon Radial Acceleration	26
First Method of calculating Radial Acceleration	27
Second Method of calculating Radial Acceleration	29
Conservation of Orbital Energy	30
Development of First Orbital Energy Equation	31
Development of Second Orbital Energy Equation	32
Relation of Moon Tangential Velocity and Radial Acceleration	36
Conclusions Shown by this Analysis of Newton's Laws	37